

Subject - Mathematics (CODE NO. 041) CLASSX {Session - 2020}- 21 UNIT - NUMBER SYSTEM

[Chapter - REAL NUMBERS]

Topics exist in the present session	Topics removed or doesn't exist
Fundamental Theorem of Arithmetic	
statement after reviewing work done	
earlier and after illustrating and	
motivating through examples,	
Proofs of irrationality of $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$.	Euclid's division lemma.
Decimal representation of rational	
Numbers <u>interms</u> of terminating/	
Non- terminating recurring decimals.	

UNIT II - ALGEBRA [Chapter - POLYNOMIALS]

Topics exist in the present session	Topics removed or doesn't exist
Zeros of a polynomial. Relationship	Statement and simple problems on
Between zeroes and coefficients of	division algorithm for polynomial
Quadratic polynomials.	with real coefficients.
[Chapter - PAIR OF LINEAR EQUATIONS IN TWO VARIABLES.]	
Pair of linear equations in two variables an	ıd
graphical method of their solution, consiste	ency Cross- multiplication method.
/inconsistency.	
Algebraic conditions for number of soluti	ions.
Solution of a pair of linear equations in two	o l
variables algebraically by substitution, by	
elimination. Simple situational problems.	
Simple problems on equations reducible to	
Linear equations.	

[Chapter - QUADRATIC EQUATIONS]

Topics exist in the present session	Topics removed or doesn't exist
Standard form of a quadratic equation	situational problems based on
$ax^2+bx+c=0$, (a =0). Solution of quadratic	equations reducible to quadratic
equations (only real roots) by factorization,	equation.
and by using quadratic formula. Relationship	
between discriminant and nature of roots.	
[Chapter - ARITHMETIC PROGRESSIONS]	
Motivation for studying Arithmetic	Application in solving daily life
Progression Derivation of the n th term and	problems based on sum to n
Sum of the first n terms of A.P.	terms.
UNIT III – COORDINATE GEOMETERY	
[Chapter - COORDINATE GEOMETERY]	
1. Lines (In two-dimensions)	Area of a triangle.
Review: Concepts of coordinate geometry,	
graphs of linear equations. Distance formula	a.
Section formula (<u>internal</u> division).	

UNIT IV- GEOMETERY [Chapter - TRIANGLES]

Topics exist in the present session

Definitions, examples, counter examples of <u>similar</u> triangles.

- 1. (prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
- 2. (motivate) If a line divides two sides of a triangle in the same ratio, the line is parallel b) In a triangle, if the square on to the third side.

 one side is equal to sum of the
- 3. (motivate) If in two triangles, the corresponding angles are equal, their the angle oppositional and the triangles are similar.

Topics removed or doesn't exist

Proof of the following theorems are deleted.

- a) The ratios of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
- b) In a triangle, if the square on one side is equal to sum of the squares on the other two sides, the angle opposite to the first side is a right angle.

Topics exist in the present session	Topics removed or doesn't exist
4. (motivate) If the corresponding sides of	N 100
two triangles are proportional, their	
corresponding angles are equal and the two	
triangles are similar.	
5. (motivate) If one angle of a triangle is	
equal to one angle of another triangle and	
the sides including these angles are	
proportional, the two triangles are similar.	
6. (<u>motivate</u>) If a perpendicular is drawn	
From the vertex of the right angle of a right	
Triangle to the hypotenuse, the triangles on	
each side of the perpendicular are similar to	
the whole triangle and to each other.	
7. (prove) In a right triangle, the square on	
The hypotenuse is equal to the sum of the	
squares on the other two sides.	1.00

[Chapter - CIRCLES]

Topics exist in the present session	Topics removed or doesn't exist
Tangent to a circle at, point of contact	
1. (prove) The tangent at any point of a	No deletion.
circle is perpendicular to the radius through	
the point of contact.	
2. (prove) The lengths of tangents drawn	
from an external point to a circle are equal.	
[Chapter – CONSTR	RUCTIONS]
1. Division of a line segment in a given ratio	Construction of a triangle similar
(internally).	to a given triangle.
2. Tangents to a circle from a point outside	it.
UNIT V – TRIGONOMETERY	
[Chapter - INTRODUCTION TO TRIGONOMETRY]	
Trigonometric ratios of an acute angle of a ri	ght- motivate the ratios which-
angled triangle. Proof of their existence	ever are defined at 0° & 90°
(well defined). Values of the trigonometric r	atios
of 30°, 45°& 60°. Relationships between the	ratios.

[Chapter - TRIGONOMETRIC IDENTITIES]

[Chapter - Introductivic includings]	
Topics exist in the present session	Topics removed or doesn't exist
Proof and applications of the identity	Trigonometric ratios of
$Sin^2A + cos^2B = 1$. Only simple identities to	complementary angles.
Be given.	
[Chapter – HEIGHTS AN	D DISTANCES]
Simple problems on heights and distances.	
Problems should not involve more than two	No deletion
right triangles. Angles of elevation/	
depression should be only 30°,45°, 60°.	
UNITVI – MENSURATION	
[Chapter – AREAS RELATED TO CIRCLE]	
Motivate the area of a circle; area of sectors	Problems based on central angle
and segment of a circle. Problems based on	120°.
areas & perimeters / circumference of the	
above said plane figures. (In calculating area	1
of segment of a circle, problems should be	
restricted to central angle of 60° and 90° onl	у
Plane figures involving triangles, simple	
quadrilaterals and circle should be taken.)	

[Chapter - SURFACE AREAS AND VOLUMES]

Topics exist in the present session	Topics removed or doesn't exist
1. Surface areas and volumes of combination	Frustum of a cone.
of any two of the following; cubes, cuboid,	
spheres, hemispheres and right circular	
cylinders/ cones.	
2. Problems involving converting one type	
of metallic solid into another and other	
mixed problems.(problems with	
combination of not more than two different	
solids be taken)	
UNITVII – STATISTICS AND PROBABILITY	
[Chapter-STATISTICS]	
Mean, median and mode of grouped data	Step deviation method for
(bimodal situation and step deviation	finding the mean.
Method for finding then mean to be avoided	
[Chapter - PROBABILITY]	
Classical definition of probability. Simple	No deletion
Problems on finding the probability of an	
Event.	

