Class.6.Maths By: Prashant Kumar

Understanding Elementary Shapes (Solved Exercise)

Ex 5.1

Q1.What is the disadvantage in comparing line segment by mere observation? Solution:

Comparing the lengths of two line segments simply by 'observation' may not be accurate. So we use divider to compare the length of the given line segments.

Q 2. Why is it better to use a divider than a ruler, while measuring the length of a line segment?

Solution:

Measuring the length of a line segment using a ruler, we may have the following errors:

- (i) Thickness of the ruler
- (ii) Angular viewing

These errors can be eradicated by using the divider. So, it is better to use a divider than a ruler, while measuring the length of a line segment.

Q.3

Draw any line segment, say \overline{AB} . Take any point C lying in between A and B. Measure the lengths of AB, BC and AC. Is AB = AC + CB? [Note: If A, B, C are any three points on a line such AC + CB = AB, then we can be sure that C lies between A and B]

Solution:

Let us consider

A, B and C such that C lies between A and B and AB = 7 cm.

AC = 3 cm, CB = 4 cm.

 \therefore AC + CB = 3 cm + 4 cm = 7 cm.

But, AB = 7 cm.

So, AB = AC + CB.

Q4.If A, B, C are three points on a line such that AB = 5 cm, BC = 3 cm and AC = 8 cm, which one of them lies between the other two? Solution:

We have, AB = 5 cm; BC = 3 cm \therefore AB + BC = 5 + 3 = 8 cm But, AC = 8 cm Hence, B lies between A and C. **Q5.**

Verify, whether D is the mid point of \overline{AG} .

Solution:

From the given figure, we have

$$AG = 7 cm - 1 cm = 6 cm$$

$$AD = 4 cm - 1 cm = 3 cm$$

and DG =
$$7 \text{ cm} - 4 \text{ cm} = 3 \text{ cm}$$

$$\therefore$$
 AG = AD + DG.

Hence, D is the mid point of \overline{AG} .

Q6.

If B is the mid point of \overline{AC} and C is the mid point of \overline{BD} , where A, B, C, D lie on a straight line, say why AB = CD?

Solution:

We have

B is the mid point of \overline{AC} .

$$\therefore$$
 AB = BC ...(i)

C is the mid-point of \overline{BD} .

$$BC = CD$$

From Eq.(i) and (ii), We have

$$AB = CD$$

Q 7.Draw five triangles and measure their sides. Check in each case, if the sum of the length of any two sides is always less than the third side. Solution:

Case I. In ∆ABC

Let AB = 2.5 cm BC = 4.8 cm and AC = 5.2 cm AB + BC = 2.5 cm + 4.8 cm = 7.3 cm Since, 7.3 > 5.2So, AB + BC > AC Hence, sum of any two sides of a triangle is greater than the third side.

Case II. In ∆PQR,

Let PQ = 2 cm QR = 2.5 cm and PR = 3.5 cm PQ + QR = 2 cm + 2.5 cm = 4.5 cm Since, 4.5 > 3.5 So, PQ + QR > PR Hence, sum of any two sides of a triangle is greater than the third side.

Case III. In ΔXYZ ,

Let XY = 5 cm YZ = 3 cm and ZX = 6.8 cm XY + YZ = 5 cm + 3 cm = 8 cm Since, 8 > 6.8 So, XY + YZ > ZX

Hence, the sum of any two sides of a triangle is greater than the third side.

Case IV. In Δ MNS,

Let MN = 2.7 cmNS = 4 cm MS = 4.7 cm

and MN + NS = 2.7 cm + 4 cm = 6.7 cm

Since, 6.7 > 4.7

So, MN + NS > MS

Hence, the sum of any two sides of a triangle is greater than the third side.

Case V. In ∆KLM,

Let KL = 3.5 cm

LM = 3.5 cm

KM = 3.5 cm

and KL + LM = 3.5 cm + 3.5 cm = 7 cm

7 cm > 3.5 cm

So, KL + LM > KM

Hence, the sum of any two sides of a triangle is greater than the third side.

Hence, we conclude that the sum of any two sides of a triangle is never less than the third side.

Ex-5.2

Q1. What fraction of a clockwise revolution does the hour hand of a clock turn through, when it goes from

- (a) 3 to 9
- (b) 4 to 7
- (c) 7 to 10
- (d) 12 to 9
- (e) 1 to 10
- (f) 6 to 3

Solution:

$$9-3=6\div 12=\frac{1}{2}$$
 of a revolution

$$7-4=3\div 12=\frac{1}{4}$$
 of a revolution

$$10 - 7 = 3 \div 12 = \frac{1}{4}$$
 of a revolution

$$9-0=9\div 12=\frac{3}{4}$$
 of a revolution

$$10 - 1 = 9 \div 12 = \frac{3}{4}$$
 of a revolution

$$6 \text{ to } 12 = 12 - 6 = 6 \text{ and } 12 \text{ to } 3 = 0 \text{ to } 3 = 3 - 6 = 6 \text{ to } 12 = 12 - 6 = 6 \text{ and } 12 = 12 - 6 = 6 \text{ and } 12 = 12 - 6 = 6 \text{ and } 12 = 12 - 6 = 6 \text{ and } 12 = 12 - 6 = 6 \text{ and } 12 = 12 - 6 = 6 \text{ and } 12 = 12 - 6$$

$$0 = 3$$

$$6 + 3 = 9 \div 12 = \frac{3}{4}$$
 of a revolution

Q 2.Where will the hand of a clock stop if it

- (a) starts at 12 and makes $\frac{1}{2}$ of a revolution, clockwise?
- (b) starts at 2 and makes $\frac{1}{2}$ of a revolution, clockwise?
- (c) starts at 5 and makes $\frac{1}{4}$ of a revolution, clockwise?
- (d) starts at 5 and makes $\frac{3}{4}$ of a revolution, clockwise? Solution:

(a) Starting from 12 and making $\frac{1}{2}$ of a revolution, the clock hand stops at 6.

(b) Starting from 2 and making $\frac{1}{2}$ of a revolution, the clock hand stops at 8.

(c) Starting from 5 and making 1/4 of a revolution, the clock hand stops at 8.

(d) Starting from 5 and making 3/4 of a revolution, the clock hand stops at 2.

- Q3.Which direction will you face if you start facing
- (a) east and make $\frac{1}{2}$ of a revolution clockwise? z
- (b) east and make 1 $\frac{1}{2}$ of a revolution clockwise? z
- (c) west and make 3/4 of a revolution anticlockwise?
- (d) south and make one full revolution? (Should we specify clockwise or anticlockwise for this last question? Why not?)
 Solution:

Taking one full revolution we will reach back to the original (starting) position. Therefore, it make no difference whether we turn clockwise or anticlockwise.

Q4.What part of a revolution have you turned through if you stand facing

- (a) east and turn clockwise to face north?
- (b) south and turn clockwise to face east?
- (c) west and turn clockwise to face east?

Solution:

(a) If we start from east and reach at north (turning clockwise) 3/4 of a revolution is required.

(b) If we start from south turning clockwise to face east, $\frac{3}{4}$ of a revolution is required.

(c) If we start from west turning clockwise to face east, $\frac{1}{2}$ of a revolution is required.

Q 5.Find the number of right angles turned through by the hour hand of a clock when it goes from

- (a)3 to 6
- (b) 2 to 8

- (c) 5 to 11
- (d) 10 to 1
- (e) 12 to 9
- (f) 12 to 6

Solution:

Starting from 3 to 6, the hour hand turns through 1 right angle.

Starting from 2 to 8, the hour hand turns through 2 right angles.

(c) 5 to 11

Starting from 5 to 11, the hour hand turns through 2 right angles.

Starting from 10 to 1, the hour hand turns through 1 right angle.

(e) 12 to 9

Starting from 12 to 9, the hour hand turns through 3 right angles.

(f) 12 to 6

Starting from 12 to 6, the hour hand turns through 2 right angles.

Q6. How many right angles do you make if you start facing

- (a) south and turn clockwise to west?
- (b) north and turn anticlockwise to east?
- (c) west and turn to west?

(d) south and turn to north? Solution:

- Q7.Where will the hour hand of a clock stop if it starts
- (a) from 6 and turns through 1 right angle?
- (b) from 8 and turns through 2 right angles?
- (c) from 10 and turns through 3 right angles?
- (d) from 7 and turns through 2 straight angles? Solution:

(a) Starting from 6 and turning through 1 right angle, the hour hand stops at 9.

(b) Starting from 8 and turning through 2 right angles, the hour hand stops at 2.

(c) Starting from 10 and turning through 3 right angles, the hour hand stops at 7.

(d) Starting from 7 and turning through 2 right angles, the hour hand stops at 7.

