

Exercise-14.3

Exercise 14.3

Question 1:

Name any two figures that have both line symmetry and rotational symmetry.

Circle and Square.

Question 2:

Draw, wherever possible, a rough sketch of:

- (i) a triangle with both line and rotational symmetries of order more than 1.
- (ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.
- (iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.
- (iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Answer 2:

(i) An equilateral triangle has both line and rotational symmetries of order more than 1.

(ii) An isosceles triangle has only one line of symmetry and no rotational symmetry of order more than 1.

Rotational symmetry:

- (iii) It is not possible because order of rotational symmetry is more than 1 of a figure, most acertain the line of symmetry.
- A trapezium which has equal non-parallel sides, a quadrilateral with line (iv) symmetry but not a rotational symmetry of order more than 1.

Line symmetry:

Rotational symmetry:

Question 3:

In a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1?

Answer 3:

Yes, because every line through the centre forms a line of symmetry and it has rotational symmetry around the centre for every angle.

Question 4:

Fill in the blanks:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square			
Rectangle			7
Rhombus			
Equilateral tr	iangle		
Regular hexag	gon		
Circle			
Semi-circle			
Answer 4:			
Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersecting point of diagonals.	4	90°
Rectangle	Intersecting point of diagonals.	2	180'
Rhombus	Intersecting point of diagonals.	2	180'
Equilateral triangle	Intersecting point of medians.	3	120'
Regular hexagon	Intersecting point of diagonals.	6	60°
Circle	Centre	infinite	At every point
Semi-circle	Mid-point of diameter	1	360°

Question 5:

Name the quadrilateral which has both line and rotational symmetry of order more than 1.

Answer 5:

Square has both line and rotational symmetry of order more than 1.

Question 6:

After rotating by 60° about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure?

Answer 6:

Other angles will be 120°,180°, 240°, 300°, 360°.

For 60' rotation: It will rotate six times.

For 120° rotation: It will rotate three times.

For 180° rotation: It will rotate two times.

For 360° rotation: It will rotate one time.

Question 7:

Can we have a rotational symmetry of order more than 1 whose angle of rotation is:

(ii) 17 ?

Answer 7:

(i) 45°

- If the angle of rotation is 45°, then symmetry of order is possible and would be 8 rotations.
- (ii) If the angle of rotational is 17°, then symmetry of order is not possible because 360° is not complete divided by 17°.

