❖ Reaction of Different Metals and Non-metals with Acids | Metal/Non-
metal | Reaction with Dilute
Hydrochloric Acid | | Reaction with Dilute Sulphuric Acid | | |--|---|--|--|---| | | Room
Temperature | Warm | Room Temperature | Warm | | Magnesium
(ribbon) | Magnesium (Mg) + Hydrochloric Acid (HCl) → Magnesium Chloride (MgCl ₂) + Hydrogen (H ₂) Mg + 2HCl → MgCl ² + H ₂ | Magnesium (Mg) + Hydrochloric Acid (HCl) → Magnesium Chloride (MgCl ₂) + Hydrogen (H ₂) Mg + 2HCl → MgCl ₂ + H ₂ | Magnesium (Mg) + Sulphuric Acid (H ₂ SO ₄) → Magnesium Sulphate (Mg ₂ SO ₄) + Hydrogen (H ₂) 2Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ | Magnesium (Mg) + Sulphuric Acid (H ₂ SO ₄) → Magnesium Sulphate (Mg ₂ SO ₄) + Hydrogen (H ₂) 2Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ | | Aluminum
(foil) | Aluminum (Al) + Hydrochloric Acid (HCl) →Aluminum Chloride (AlCl ₃) + Hydrogen (H ₂) 2Al + 6HCl → 2AlCl ₃ + 3H ₂ | Aluminum (Al) + Hydrochloric Acid (HCl) →Aluminum Chloride (AlCl ₃) + Hydrogen (H ₂) 2Al + 6HCl → 2AlCl ₃ + 3H ₂ | Aluminum (Al) + Sulphuric Acid (H ₂ SO ₄) + Water (H ₂ O) →Aluminum Sulphate (Al ₂ SO ₄) HexaHydrate (6H ₂ O) + Hydrogen (H ₂) 2Al + 3H ₂ SO ₄ + 6H ₂ O →Al ₂ (SO ₄) ₃ •6H ₂ O + 3H ₂ | Aluminum (Al) + Sulphuric Acid (H ₂ SO ₄) + Water (H ₂ O) →Aluminum Sulphate (Al ₂ SO ₄) HexaHydrate (6H ₂ O) + Hydrogen (H ₂) 2Al + 3H ₂ SO ₄ + 6H ₂ O →Al ₂ (SO ₄) ₃ • 6H ₂ O + 3H ₂ | | Iron (filings) | Iron does not react with hydrochloric acid at room temperature. | Iron (Fe) + Hydrochloric Acid (HCl) →Iron Chloride (FeCl ₂) + Hydrogen (H ₂) 2Fe + 2HCl → 2FeCl ₂ + H ₂ | Iron does not react with diluted sulphuric acid at room temperature. | Iron (Fe) + Diluted Sulphuric Acid (H ₂ SO ₄) →Ferrous Sulphate (FeSO ₄) + Hydrogen (H ₂) Fe + H ₂ SO ₄ → FeSO ₄ + H ₂ | | Copper
(peeled
flexible
wire) | Copper does not react with hydrochloric acid at room temperature. | Copper does not react with hydrochloric acid (even when it is heated) | Copper does not react with diluted sulphuric acid at room temperature. | Copper $(Cu)^{+ conc}$.
Sulphuric Acid
(H_2SO_4)
\rightarrow Copper
Sulphate
$(CuSO_4) + Sulphur$
Dioxide $(SO_2) +$
Water (H_2O) | | | | | | $Cu + 2H2SO4 \rightarrow CuSO4 + SO2 + 2H2O$ | |----------------------|---|--|--|--| | Charcoal
(powder) | Charcoal does
not react with
hydrochloric
acid at room
temperature. | Charcoal does
not react with
hydrochloric
acid (even when
it is heated). | Charcoal does not react with sulphuric acid at room temperature. | Charcoal (C)+conc.
Sulphuric Acid
$(H_2SO_4) \rightarrow Carbon$
Dioxide (CO_2) +
Sulphur Dioxide
(SO_2) + Water
(H_2O)
$C + 2H_2SO_4 \rightarrow$
$CO_2 + 2SO_2 +$
$2H_2O$ | | Sulphur
(powder) | Sulphur does
not react with
hydrochloric
acid at room
temperature. | Sulphur does not react with hydrochloric acid (even when it is heated). | Sulphur does not react with sulphuric acid at room temperature. | Sulphur does not react with sulphuric acid (even when it is heated). | ## ➤ Note: - When metals react with acids, they produce hydrogen gas with produce a 'pop' sound when it burns. - Iron reacts with hydrochloric acid and sulphuric acid on heating. - Copper does not react with hydrochloric acid (even when it is heated) but reacts with sulphuric acid on heating. ## Uses of Metals and Non-metals As discussed above, metals are hard, malleable, ductile, and sonorous and are hence, can be used for: - Making machinery - Making automobiles, trains, and aeroplanes - Making cooking utensils and water boilers - Making industrial gadgets and satellites etc. ## Non-metals also have several uses, such as: - Essential for life (such as oxygen) - Used as fertilizers (such as nitrogen and phosphorus) - Used to purify water (such as chlorine) - Applied on wounds as an antiseptic (such as purple-coloured iodine solution) - Used in crackers (such as sulphur) ***Thanks***