8.Quadrilaterals

Ex-8.1(solved exercise) Part-1

By:- Ashish Jha

Q1.The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.
Solution:Let the angles of the quadrilateral be $3 x, 5 x, 9 x$ and $13 x$.
$\therefore 3 x+5 x+9 x+13 x=360^{\circ}$
[Angle sum property of a quadrilateral]
$\Rightarrow 30 \mathrm{x}=360^{\circ}$
$\Rightarrow x=360 / 30$
$=12^{\circ}$
$\therefore 3 \mathrm{x}=3 \times 12^{\circ}=36^{\circ}$
$5 \mathrm{x}=5 \mathrm{x} 12^{\circ}=60^{\circ}$
$9 \mathrm{x}=9 \times 12^{\circ}=108^{\circ}$
$13 \mathrm{a}=13 \times 12^{\circ}=156^{\circ}$
\Rightarrow The required angles of the quadrilateral are $36^{\circ}, 60^{\circ}, 108^{\circ}$ and 156°.
Q 2.If the diagonals of a parallelogram are equal, then show that it is a rectangle.
Solution:
Let $A B C D$ is a parallelogram such that $A C=B D$.

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$,
$\mathrm{AC}=\mathrm{DB}$ [Given]
$\mathrm{AB}=\mathrm{DC}$ [Opposite sides of a parallelogram]
$\mathrm{BC}=\mathrm{CB}$ [Common]
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}$ [By SSS congruency]
$\Rightarrow \angle A B C=\angle D C B[B y ~ C . P . C . T]. ~ . . .(1) ~$
Now, $A B \| D C$ and $B C$ is a transversal. [$\because A B C D$ is a parallelogram]
$\therefore \angle \mathrm{ABC}+\angle \mathrm{DCB}=180^{\circ} \ldots$ (2) [Co-interior angles]
From (1) and (2), we have
$\angle A B C=\angle D C B=90^{\circ}$
i.e., $A B C D$ is a parallelogram having an angle equal to 90°.
$\therefore A B C D$ is a rectangle.
Q3.Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Solution:

Let $A B C D$ be a quadrilateral such that the diagonals $A C$ and $B D$ bisect each other at right angles at O .

\therefore In $\triangle A O B$ and $\triangle A O D$, we have
$A O=A O$ [Common]
$O B=O D[O$ is the mid-point of $B D]$
$\angle A O B=\angle A O D$ [Each 90]
$\therefore \triangle \mathrm{AQB} \cong \triangle \mathrm{AOD}[\mathrm{By}, \mathrm{SAS}$ congruency
$\therefore A B=A D$ [By C.P.C.T.]
Similarly, $A B=B C$.. .(2)
$B C=C D$
$C D=D A(4)$
\therefore From (1), (2), (3) and (4), we have
$A B=B C=C D=D A$
Thus, the quadrilateral $A B C D$ is a rhombus.
Alternatively : ABCD can be proved first a parallelogram then proving one pair of adjacent sides equal will result in rhombus.

