8.Quadrilaterals

Ex-8.1(solved exercise) Part-1

By:- Ashish Jha

Q1.The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.

Solution:Let the angles of the quadrilateral be 3x, 5x, 9x and 13x.

 $\therefore 3x + 5x + 9x + 13x = 360^{\circ}$ [Angle sum property of a quadrilateral] $\Rightarrow 30x = 360^{\circ}$ $\Rightarrow x = 360/30$ $= 12^{\circ}$ $\therefore 3x = 3 \times 12^{\circ} = 36^{\circ}$ $5x = 5 \times 12^{\circ} = 60^{\circ}$ $9x = 9 \times 12^{\circ} = 108^{\circ}$ $13a = 13 \times 12^{\circ} = 156^{\circ}$ $\Rightarrow The required angles of the quadrilateral are 36^{\circ}, 60^{\circ}, 108^{\circ} and 156^{\circ}.$

Q 2.If the diagonals of a parallelogram are equal, then show that it is a rectangle. Solution:

Let ABCD is a parallelogram such that AC = BD.

 $\triangle ABC \text{ and } \triangle DCB,$ AC = DB [Given] AB = DC [Opposite sides of a parallelogram] BC = CB [Common] $\therefore \triangle ABC \cong \triangle DCB [By SSS congruency]$ $\Rightarrow \angle ABC = \angle DCB [By C.P.C.T.] ...(1)$ Now, $AB || DC and BC is a transversal. [<math>\therefore$ ABCD is a parallelogram] $\therefore \angle ABC + \angle DCB = 180^{\circ} ... (2) [Co-interior angles]$ From (1) and (2), we have $\angle ABC = \angle DCB = 90^{\circ}$ i.e., ABCD is a parallelogram having an angle equal to 90^{\circ}. $\therefore ABCD$ is a rectangle.

Q3.Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

In

Solution:

Let ABCD be a quadrilateral such that the diagonals AC and BD bisect each other at right angles at O.

... In $\triangle AOB$ and $\triangle AOD$, we have AO = AO [Common] OB = OD [O is the mid-point of BD] $\angle AOB = \angle AOD$ [Each 90] $\therefore \triangle AQB \cong \triangle AOD$ [By,SAS congruency $\therefore AB = AD$ [By C.P.C.T.](1) Similarly, AB = BC ...(2) BC = CD(3) CD = DA(4) \therefore From (1), (2), (3) and (4), we have AB = BC = CD = DAThus, the guadriatered ABCD is a rhomb

Thus, the quadrilateral ABCD is a rhombus.

Alternatively : ABCD can be proved first a parallelogram then proving one pair of adjacent sides equal will result in rhombus.